Here

$$
k^{2}=d\left(\frac{\mu_{3}+\mu_{3}}{\mu_{1} \mu_{2}}\right), \quad \omega_{3}^{2}=\frac{1}{\mu_{s}} \frac{\partial p_{s}}{\partial x}-\frac{1}{\mu_{1}+\mu_{8}}\left(\frac{\partial p_{1}}{\partial x}+\frac{\partial p_{2}}{\partial x}\right)
$$

The accurate solution will have the form

$$
\begin{equation*}
U_{s}=\frac{1}{\mu_{1}+\mu_{2}}\left(\frac{\partial p_{1}}{\partial x}+\frac{\partial p_{2}}{\partial x}\right)+\frac{\omega^{2}}{k_{0}^{2}}\left(\frac{\operatorname{ch} k y}{\operatorname{ch} k h}-1\right) \tag{9}
\end{equation*}
$$

and shows that the effect is largely determined by the intensity of the interaction of the components of the gas, which is characterized by the parameter $k_{0} R$ (Fig.2). In the case of weak interaction, when the value of this parameter is small ( $k_{0} R=0.5,1$ and 2$)$, the components of the binary mixture behave as though they are independent. It is interesting to note that in the case of strong interaction $\left(k_{0} R=\infty\right)$, the flow again acquires the form of Poiseuille flow with the overall viscosity of the components and with the overall gradient.

## REFERENCES

1. HIRSHFELD D., KERMISS C. and BIRD R., Molecular Theory of Gases and Liquids, IIL, Moscow, 1961.
2. SHAVALIEV M.SH., The Barnett approximation and the distribution functions and super-Barnett contributions to the stress tensor and heat flow, PMM, 42, 4, 1978.
3. STRUMINSKII V.V., The effect of the rate of diffusion on the flow of gaseous mixtures, PMM, 38, 2, 1974.
4. STRUMINSKII V.V., Methods of solving the systems of kinetic equations of gaseous mixtures, Dokl. Akad. Nauk SSSR, 237, 3, 1977.
5. STRUMINSKII V.V. and TURKOV V.E., Higher approximations of the asymptotic method of solving the system of kinetic Boltzmann equations, Dokl. Akad. Nauk SSSR, 303, 3, 1988.
6. STRUMINSKII V.V., The theory of systems of similar particles, Dokl. Akad. Nauk SSSR, 252, 6, 1980.
7. STRUMINSKII V.V., Aerodynamies and Molecular Gas Dynamics, Nauka, Moscow, 1985.

Translated by R.C.G.
J. Appl. Maths Mechs, Vol. 55, No. 3, pp. 301-309, 1991

0021-8928/91 \$15.00+0.00
Printed in Great Britain
(C) 1992 Pergamon Press Ltd

EXACT SOLUTIONS OF THE NAVIER-STOKES EQUATIONS*

## V.I. GRYN

Considering steady Hiemenz-Birman flows only, a study is made of flows between porous walls, on the assumption that fluid is injected and extracted at identical rates. It is shown that wherever fluid is being extracted a boundary layer forms at the wall. $A$ class of unsteady two-dimensional flows, more general than Hiemenz-Birman flow, is investigated. In a class of flows generalized Jeffrey-Hamel flow, attention is devoted to flows in a dihedral angle between porous walls when fluid is injected and extracted. A class of steady (unsteady) two-dimensional flows is found, in which flow between coaxial porous cylinders, with fluid injected and extracted at arbitrary rates, is considered. Some exact solutions of the steady- and unsteady-state Navier-Stokes equations are found.

[^0]1. Plow between porous walls when there is injection and extraction. The equations governing steady two-dimensional viscid incompressible flow/1/

$$
\begin{equation*}
u_{x}+v_{y}=0, \quad u_{y}-v_{x}=\omega, \quad \Delta \omega=R\left(u \omega_{x}+v \omega_{y}\right) \tag{1.1}
\end{equation*}
$$

have solutions of the following form (Hiemenz-Birman flow $/ 2-4 /$ ):

$$
\begin{equation*}
v-S(y), u=A(y) x+T(y), \quad \omega=B(y) x+\Omega(y) \tag{1.2}
\end{equation*}
$$

Other solutions are obtained from (1.2) by rotating the $x, y$ axes. The functions $S, A$, $T, B$ and $\Omega$ satisfy the system of equations

$$
\begin{gather*}
A=-S^{\prime}, \quad B=A^{\prime}, \quad \Omega=T^{\prime}  \tag{1.3}\\
S^{(\mathrm{IV})}+R\left(S^{\prime} S^{\prime \prime}-S S^{\prime \prime}\right)=0, \quad T^{\prime \prime \prime}+R\left(S^{\prime \prime} T-S T^{\prime \prime}\right)=0 \tag{1.4}
\end{gather*}
$$

Note that Eqs. (1.4) can be written differently as

$$
\begin{equation*}
S^{\prime \prime \prime}+R\left(S^{\prime 2}-S S^{n}\right)=C_{1}, \quad T^{n}+R\left(S^{\prime} T-S T^{\prime}\right)=C_{2} \tag{1.5}
\end{equation*}
$$

Throughout, the letters $C_{1}, C_{2}, \ldots$ will denote constants.
Eqs.(1.4) have the obvious solutions

$$
S=C_{3} y+C_{4}, \quad T=\int_{0}^{y} \int_{0}^{t} C_{3} \exp \left(1 / 2 C_{3} R s^{2}+C_{4} R s\right) d s d t+C_{6} y+C_{7}
$$

and also solutions of the form

$$
S=-6 /(R y), \quad T=C_{3} y^{2}+C_{4} y^{-2}+C_{3} y^{-3}
$$

If $C_{1}=0$ the equations for $S$ becomes an Abel equation of the second kind. The pressure corresponding to solutions of type (1.2) is

$$
p(x, y)=-1 /{ }_{2} C_{1} R^{-1} \rho x^{2}+C_{2} R^{-1} \rho x+R^{-1} \rho S^{\prime}-1 / 2 \rho S^{2}+C_{8}
$$

where $\rho$ is the density of the liquid and $C_{1}$ and $C_{2}$ are the constants in (1.5). If $C_{1} \neq 0$, the substitution $z=x-x_{0}$ brings us to the case $C_{2}=0 / 3 /$.

In connection with flows (1.2) with $C_{2}=0$, studies have been published /3, 4/ of flows between porous walls $y= \pm h$ assuming that fluid is injected or extracted at rates $V_{ \pm}$(at the wall $y=-h$ one has injection if $\quad V_{-}>0$, extraction if $V_{-}<0$ and no-slip if $V_{\mu}=0$ ). Assuming that $V_{+}=V_{m} \equiv V$ in $/ 3,4 /$ only the solutions $S \equiv V, T \equiv 0$ were found. We shall expand these results by conducting a more complete analysis of flows at $V_{-}=V_{+}$. In addition, we shall assume that the wall $y=h$ is moving at a horizontal velocity $U$. The boundary conditions for Eqs.(1.4) are as follows:

$$
\begin{equation*}
S( \pm h)=V_{ \pm}, \quad S^{\prime}( \pm h)=0, \quad T(-h)=0, \quad T(h)=U, \quad \int_{-h}^{h} T(y) d y=Q \tag{1.6}
\end{equation*}
$$

where the integral condition is an analogue of the discharge of liquid in the section $x=0$ (this condition was replaced in $/ 3,4 /$ by $C_{2}=0$ ).

Streamlines for the case $U=V_{-}=0, V_{+}<0$ are shown in Fig.1. The porous walls in Fig.1-5 are represented by dashed lines; the solid diagonally hatched lines in Fig. 1 and 4 represent solid walls. The existence of back flow at large $R$ has been observed previously /3/.

Let us consider the case $V_{+}=V_{-} \equiv V>0_{x}$ when problem (1.4), (1.6) can be solved in terms of elementary functions:

$$
\begin{aligned}
& S(y) \equiv V, T(y)=\tau(y / h), \tau(\xi)=1 / 2 U(1+\xi)+(Q-U h) \times \\
& {[\exp (\alpha \xi)-\operatorname{sh}(\alpha) \xi-\operatorname{ch}(\alpha)]\left\{2 h\left[\alpha^{-1} \operatorname{sh}(\alpha)-\operatorname{ch}(\alpha)\right]\right\}^{-1}, \alpha=R V h}
\end{aligned}
$$

The pressure in this case is

$$
p(x, y)=-\rho Y\left\{(Q-U h)\left[2 h^{2}\left(c t h(\alpha)-\alpha^{-1}\right)\right]^{-1}+1 / h^{-1} U\right\} x+\text { const }
$$

The following asymptotic estimates hold:

$$
\begin{gather*}
T(y)=1 / 2 h^{-1}(Q-U h)\left(1+\alpha^{-1}\right)(1+y / h)+1 / 2 U(1+y / h)+O\left(\alpha^{-2}\right)  \tag{1.7}\\
p(x, y)=-x \beta V\left\{1 / 2 h^{-2}(Q-U h)\left(1+\alpha^{-1}\right)+1 / h^{-1} U+O\left(\alpha^{-2}\right)\right\}+ \\
y \in\left(-h, h_{1}\right], h_{1}=h\left(1-2 \alpha^{-1} \ln \alpha\right), \alpha>e
\end{gather*}
$$



Thus, in this region the solution is identical, to within $O\left(\alpha^{-2}\right)$, with the solution of Euler's equations and there is no boundary layer at the wall $y=-h$. At the wall $y=h$, however, there is a boundary layer if $Q \neq U h$. It will be convenient to divide it into two subregions. For $y \in\left[h_{2}, h\right], h_{2}=h\left(1-\alpha^{-2}\right)$, we have the following asymptotic estimate:

$$
\begin{gathered}
T(y)=1 / 2^{-1}(Q-U h)\left(2+\alpha^{-1}\right) \alpha(1-y / h)+1 / 2 U(1+y / h)+ \\
O\left(\alpha^{-2}\right)=U+\alpha(Q / h-U)(1-y / h)+O\left(\alpha^{-2}\right)
\end{gathered}
$$

The second formula of (1.7) holds for $y \in[-h, h], \alpha \gg e$. Consequently, for $y \in\left[h_{2}, h\right]$ the solution of problem (1.4), (1.6) does not approach a solution of the Euler equations. However, at $y \in\left[-h, h_{1}\right] \cup\left[h_{2}, h\right]$ the streamlines coincide to within $O\left(\alpha^{-2}\right)$ with the corresponding parabolas. When $y \in\left[h_{1}, h_{2}\right]$ the parabolas are "spliced" together.

The streamlines

$$
\begin{aligned}
& x\left(y ; C_{\mathrm{s}}\right)=(Q-U h)\left[h \alpha^{-1} \exp \left(h^{-1} \alpha y\right)-1 / h^{-1} \operatorname{sh}(\alpha) y^{2}-\operatorname{ch}(\alpha) y\right] \times \\
& \left\{2 h\left[\alpha^{-1} \operatorname{sh}(\alpha)-\operatorname{ch}(\alpha)\right]\right\}^{-1}+1 / 2 U\left(y+1 / h^{-1} y^{2}\right)+C_{\mathrm{s}}
\end{aligned}
$$

at $U=0$ are shown in Fig.2.
2. Flows allowing transformation to vorticity-stream function variables. Let $\psi_{y}=u$, $\psi_{x}=-v$ and assume that the following hold.

Condition 1. $\psi_{y} \omega_{x}-\psi_{x} \omega_{y} \neq 0$.
Consider the functions
$X(\omega, \psi) \equiv \omega_{x}(x(\omega, \psi), y(\omega, \psi)), Y(\omega, \psi) \equiv \omega_{y}(x(\omega, \psi), y(\omega, \psi))$
Eqs. (1.1) become

$$
\begin{gather*}
\frac{\partial G_{i}}{\partial \omega}+\frac{1}{\sigma}\left\|\begin{array}{cc}
f & g \\
\sigma=X^{2}+Y^{2}, & g=u X+v Y, \quad \frac{\partial G_{i}}{\partial \phi}=\frac{1}{\sigma} F_{i}, \quad i=1,2 \\
G_{1}=\|
\end{array} \begin{array}{l}
u=u Y-v X \\
v
\end{array}\right\|, \quad G_{2}=\left\|\begin{array}{l}
X \\
Y
\end{array}\right\|, \quad F_{1}=\omega\left\|\begin{array}{c}
Y
\end{array}\right\|, \quad F_{2}=R g G_{2} \tag{2.1}
\end{gather*}
$$

Condition 2. $u=u(\omega), v=v(\omega)$.
If Conditions 1 and 2 both hold, then $d G_{i} / d \omega=\sigma^{-1} F_{i}, i=1,2$, and therefore $d g / d \omega=\sigma^{-1} R g^{2}$, $d \sigma / d \omega=2 R g$. Thus,

$$
\begin{gather*}
\sigma=C_{1} g^{2}, C_{1}>0, \quad g=C_{1}^{-1} R \omega+C_{2}, X=C_{1} C_{3} R^{-1}\left(C_{1}^{-1} R \omega+C_{2}\right)  \tag{2.2}\\
Y=C_{3}^{-1} C_{4} X, \quad C_{3}^{2}+C_{4}^{2}=C_{1}^{-1} R^{2}, \quad u=C_{4} W+C_{5}, \quad v=-C_{3} W+C_{6}, \\
W=C_{1} R^{-2}\left(\omega-C_{*} \ln \left|\omega+C_{*}\right|\right), C_{*}=C_{1} C_{2} R^{-1}, C_{3} C_{5}+C_{4} C_{8}=C_{1}^{-1} R
\end{gather*}
$$

Condition 3. $u=u(a x+b y), v=v(a x+b y), a^{2}+b^{2}=1$.
Proposition 1. If Conditions 1 and 2 hold, Eqs.(1.1) have exactly the same solutions as when Conditions 1 and 3 hold, and all these solutions are given by (2.2).

Condition 4. $\omega=\omega(a x+b y), a^{2}+b^{2}=1$.
We may assume without loss of generality that $a=0, b=1$ (rotation of the $x, y$ axes). Let Conditions 1 and 4 hold. Then

$$
\begin{gather*}
\omega^{\prime \prime}=R v \omega^{\prime}, v=v(y) \neq 0, u_{x}=-v^{\prime} \equiv g_{*}(y), \quad u_{y}=\omega \\
u=\int_{0}^{y} \omega(s) d s+f_{*}(x), \quad f_{*}^{\prime}(x)=g_{*}(y)=C_{1} \quad f_{*}=C_{1} x+C_{3} \\
v=-C_{1} y+C_{2}, C_{1}^{2}+C_{2}^{2} \neq 0_{2} y \neq C_{1}^{-1} C_{2} \\
\omega(y)=C_{4} \int_{0}^{y} \exp \left(C_{2} R s-1 / 2 C_{1} s^{2}\right) d s+C_{5}  \tag{2.3}\\
u(x, y)=C_{3}^{*}+C_{1} x+C_{5} y+C_{4}^{*}\left(y-C_{1}^{-1} C_{2}\right) \int_{0}^{y} w(s) d s+C_{1}^{-1} C_{4} R^{-1} w(y) \\
w(y)=\exp \left[-1 / C_{1} R\left(y-C_{1}^{-1} C_{2}\right)^{2}\right] \\
C_{4}^{*}=C_{4} \exp \left(1 / 2_{1} C_{1}^{-1} C_{2}^{2} R\right), \quad C_{3}^{*}=C_{3}-C_{1}^{-1} C_{4} R^{-1}
\end{gather*}
$$

If Conditions 1, 4 are satisfied, all the other conditions are obtained from (2.3) by rotation of the $x, y$ axes.

Condition 5. $X=X(\omega), Y=Y(\omega)$.
Let Conditions 1 and 5 hold. Then

$$
\begin{gather*}
\sigma>0, d G_{2} / d \omega=\sigma^{-1} F_{2}, g=g(\omega), Y d X-X d Y=0  \tag{2.4}\\
a X+b Y=0, a^{2}+b^{2}=1, a \omega_{x}+b \omega_{y}=0 \\
\omega=\omega(a y-b x)
\end{gather*}
$$

The following result follows from (2.3) and (2.4).
Proposition 2. If Conditions 1 and 5 hold, Eqs. (1.1) have exactly the same solutions as when Conditions 1, 4 hold, and all these solutions are either of the form (2.3) or derivable from (2.3) by rotation of the $x, y$ axes.
3. Flows in a dihedral angle between porous walls with injection and extraction. Let us transform the functions and variables in (1.1) by setting

$$
\begin{gathered}
x=r \cos \theta, \quad y=r \sin \theta \\
u=u_{r} \cos \theta-u_{\theta} \sin \theta, \quad v=u_{r} \sin \theta+u_{\theta} \cos \theta, \omega=\omega
\end{gathered}
$$

Then (1.1) becomes

$$
\begin{gather*}
\frac{\partial}{\partial r}\left(r u_{r}\right)+\frac{\partial u_{\theta}}{\partial \theta}=0, \quad \frac{\partial}{\partial r}\left(r u_{\theta}\right)-\frac{\partial u_{r}}{\partial \theta}+\omega=0  \tag{3.1}\\
\frac{1}{r} \frac{\partial}{\partial r}\left[r \frac{\partial \omega}{\partial r}\right]+-r^{1} \frac{\partial^{2} \omega}{\partial \theta^{2}}=R\left[u_{r} \frac{\partial \omega}{\partial r}+\frac{u_{\theta}}{r} \frac{\partial \omega}{\partial \theta}\right] \tag{3.2}
\end{gather*}
$$

We will seek solutions on the assumption that Condition 1 holds, which is equivalent to the condition $g \equiv u_{r} \partial \omega / \partial r+u_{\theta} r^{-1} \partial \omega / \partial \theta \neq 0$. If $g \equiv 0$ all the local solutions were found in /1/.

Let us assume that the following hold.

Condition 6. $u_{\theta}=B(r)$.
Then it follows from (3.1) and (3.2) that

$$
\begin{equation*}
\frac{4 A^{\prime}(\theta)}{r^{4}}-\frac{1}{r}\left(r\left(\frac{1}{r}(r B)^{\prime}\right)^{\prime}\right)^{\prime}+\frac{A^{\prime \prime \prime}}{r^{4}}=R\left\{\frac{B A^{\prime \prime}}{r^{3}}-\frac{A}{r}\left[\frac{!2 A^{\prime}}{r^{3}}-\frac{1}{r}(r B)^{\prime}\right]\right\} \tag{3.3}
\end{equation*}
$$

There are two possible cases:
Case 1: $A^{\prime \prime}(\theta) \neq 0$. Then $u_{\theta}=C_{1} / r$.

$$
\begin{equation*}
4 A^{\prime}+A^{\prime \prime \prime}+2 R A A^{\prime}-C_{1} R A^{\prime \prime}=0, A^{\prime \prime} \not \equiv 0 \tag{3.4}
\end{equation*}
$$

Eq. (3.4) can be transformed to

$$
\begin{equation*}
4 A+A^{n}+R A^{2}-C_{1} R A^{\prime}=C_{2}, A^{n} \neq 0 \tag{3.5}
\end{equation*}
$$

Eq.(3.5) with $C_{1}=0$ is the Jeffrey-Hamel equation, which occurs in the theory of flows in diverging and converging ducts. A detailed analysis of Eq. (3.5) with $C_{1}=0$ may be found in $/ 5,6 /$. We shall expand the description in $/ 5,6 /$ by expressing all the solutions in terms of elementary functions when $C_{1}=0$. They are

$$
\begin{gathered}
A(\theta)=-C_{5}^{2} \operatorname{tg}^{2}\left[\left({ }^{1 / 6} R\right)^{1 / 2} C_{5}\left(\theta+C_{4}\right)\right]-2 R^{-1}-2 / 3 C_{5}{ }^{2}, \quad \theta \in[0,2 \pi) \\
A(\theta)=C_{6}{ }^{2} \operatorname{ch}^{-2}\left[(1 / 6 R)^{1 / 2} C_{6}\left(\theta+C_{4}\right)\right]-2 R^{-1}-1 / 3 C_{6}{ }^{2}, \quad \theta \in[0,2 \pi) \\
A(\theta)=-\left[6\left(\theta+C_{4}\right)^{-2}+2 \mathrm{l} / R, \quad \theta \in[0,2 \pi) ; C_{5} \neq 0, C_{6} \neq 0\right.
\end{gathered}
$$

The last two solutions have a cut along the ray $\theta=0$ in the $x, y$ plane. Among these solutions there are some satisfying no-slip conditions at the rays $\theta= \pm \theta_{*}$. They are

$$
\begin{gathered}
A(\theta)=2 R^{-1}\left[3 \alpha^{2} \operatorname{ch}^{-2}(\alpha \theta)-\left(1+\alpha^{2}\right)\right], \alpha^{2} \in(1 / 2, \infty) \\
|\theta| \leqslant \theta_{*}(\alpha), \quad \theta_{*}(\alpha)=\ln \left[\left(\frac{3}{\alpha^{-2}+1}\right)^{1 / 2}-\left(2-\frac{3}{1+\alpha^{2}}\right)^{1 / 2}\right]
\end{gathered}
$$

The no-slip condition holds along the rays $\theta= \pm \theta_{*}(\alpha)$. The function $\theta_{*}(\alpha)$ increases monotonically from 0 at $\alpha=2^{-1 / 2}$ to $\ln \left(3^{1 / 2}+2^{1 / 2}\right)$ at $\alpha=\infty$.

Flows with $C_{1} \neq 0$ may also be of some interest. In this class we consider steady twodimensional viscous incompressible flow between two porous walls $\theta=0, \theta=2 \beta$. Fluid is injected (extracted) at the wall $\theta=0(\theta=2 \beta)$ at a rate $C_{1} / r \geqslant 0$. The discharge $Q$ of the liquid through the cross-section $r=$ const is prescribed. The boundary conditions added to Eq.(3.4) are

$$
A(0)=A(2 \beta)=0, \quad \rho \int_{0}^{2 \beta} A(\theta) d \theta=Q
$$

The case $C_{1}=0$ corresponds, if $Q>0$, to Jeffrey-Hamel flow in a diverging duct, and if $Q<0$ - in a converging duct. The streamlines in the case $Q<0, C_{1}>0$ are shown in Fig. 3 .

If is not our purpose here to analyse the boundary layer at the wall $\theta=2 \beta$. We mention that some of the flows described by Eq.(3.4) have infinite radial velocity along certain rays $\left(\left|A\left(\theta_{*}\right)\right|=\infty\right)$. Thus, if $C_{1}>0$ flows with closed streamlines may exist. Thus, in Case 1 the flows have the form

$$
\begin{equation*}
u(\theta)=C_{1} / r, u_{r}=A(\theta) / r, p=\left(2 R r^{2}\right)^{-1} \rho\left[4 A(\theta)-C_{2}-C_{1}{ }^{2} R\right]+C_{3} \tag{3.6}
\end{equation*}
$$

where $A, C_{1}$ and $C_{2}$ are as in (3.5).
Case 2. $A=C_{6} \theta+C_{1}$. Then we infer from (3.3) that $C_{8}=0$, and consequently, assuming the truth of Condition 1 , we have

$$
\begin{gather*}
u_{\theta}=-[d(d+2)]^{-1} C_{3} r^{d+1}-1 / 2 C_{3} r+C_{4} r^{-1}, \quad d=C_{1} R \neq-2  \tag{3.7}\\
u_{\theta}=-(d r)^{-1} C_{2} \ln r-1 / 2 C_{3} r+C_{4} r^{-1}, d=-2 ; u_{r}=C_{1} r^{-1} \\
p=-\frac{C_{1}{ }^{2} \rho}{2 r^{2}}+\rho \int_{1}^{r} \frac{u_{\theta}^{2}(s)}{s} d s+C_{1} C_{3} \rho \theta+C_{5}, \quad C_{1} \neq 0, \quad C_{2} \neq 0
\end{gather*}
$$

If $C_{3} \neq 0$ there is a cut along the ray $\theta=0$.

Proposition 3. If Conditions 1 and 6 hold, all solutions of Eqs.(1.1) have the form (3.6), (3.7).
4. Plows between coaxial porous cylinders with injection and extraction. Let us assume that

Condition 7. $u_{r}=u_{r}(r)$.
It follows from (3.1)-(3.3) that

$$
\begin{gather*}
u_{\tau}=A(r) / r, u_{\theta}=-A^{\prime} \theta+B(r) / r, \omega=r^{-1}\left[\left(r A^{\prime}\right)^{\prime} \theta-B^{\prime}\right]  \tag{4.1}\\
\left(r\left(r^{-1}\left(r A^{\prime}\right)^{\prime}\right)^{\prime}\right)^{\prime}+R\left[r^{-1} A^{\prime}\left(r A^{\prime}\right)^{\prime}-A\left(r^{-1}\left(r A^{\prime}\right)^{\prime}\right)^{\prime}\right]=0  \tag{4.2}\\
\left(r\left(r^{-1} B^{\prime}\right)^{\prime}\right)^{\prime}+R\left[r^{-2} B\left(r A^{\prime}\right)^{\prime}-A\left(r^{-1} B^{\prime}\right)^{\prime}=0\right.
\end{gather*}
$$

The pressure is

$$
\begin{gathered}
p=-1 / 2 \rho\left[\left(A^{\prime}\right)^{2}-r^{-1} A\left(r A^{\prime}\right)^{\prime}+R^{-1} r\left(r^{-1}\left(r A^{\prime}\right)^{\prime}\right)^{\prime}\right] \theta^{2}+\rho\left[A^{\prime} B-\right. \\
\left.A B^{\prime}+R^{-1}\left(r B^{\prime \prime}-B^{\prime}\right)\right] r^{-1} \theta-\rho \int\left[r^{-2} A A^{\prime}-r^{-3}\left(A^{2}+B^{2}\right)-\right. \\
\left.R^{-1} r^{-2}\left(r A^{\prime}\right)^{\prime}\right] d r+C_{B}
\end{gathered}
$$

If $A^{\prime} \neq 0$ or $B^{\prime} \neq C_{8}(1+R A) r$, there will be a cut at $\theta=\pi$.
Proposition 4. If Condition 7 holds, the solutions of Eqs.(3.1) and (3.2) constitute a seven-parameter family of type (4.1), where the functions $A$ and $B$ satisfy (4.2).

The flows (4.1) are analogous to (1.2). We note that formulae (1.2) exhaust all the flows for which $v=v(y)$.

Integration yields the following family of solutions of Eqs.(4.2):

$$
\begin{gathered}
B=\int_{1}^{r} C_{3} t \int_{1}^{t} s^{c} \exp \left[1 / 2 C_{1} R(\ln s)^{2}\right] d s d t+1 / 2 C_{4} r^{2}+C_{5} \\
A=C_{1} \ln r+C_{2} ; c=C_{2} R-1
\end{gathered}
$$

If $C_{1}{ }^{2}+C_{2}{ }^{2} \neq 0$ and $C_{3} \neq 0$, Condition 1 holds (the solution depends on $R$ ).
Within the class of flows (1.2), let us consider flow between coaxial porous cylinders $r=r_{ \pm}$, with a fluid being injected or extracted at rates $V_{ \pm}, V_{+} r_{+} \neq V_{-} r_{-}$. Under these circumstances there is a cut at the ray $\theta=\pi$, acting as a sink for some $r$ values and a source for other $r$ values. The boundary conditions for the set of Eqs.(4.2) are

$$
\begin{equation*}
A\left(r_{ \pm}\right)=V_{ \pm} r_{ \pm}, \quad A^{\prime}\left(r_{ \pm}\right)=B\left(r_{ \pm}\right)=0, \quad \int_{r_{-}}^{r_{+}} \frac{B(r)}{r} d r=Q \tag{4.3}
\end{equation*}
$$

where the integral condition is an analogue of the discharge of liquid through the section $\theta=0$.

The streamlines in the case $V_{m}=0, V_{+}<0, Q<0$ are shown in Fig. 4 . The two closelying straight-line segments in Figs. 4 and 5 represent cuts. The structure of the flow in Fig. 4 is similar to that of the flow in Fig.1.

Let us consider the case

$$
\begin{equation*}
V_{+} r_{+}=V_{-} r_{-} \equiv \gamma \neq 0, \infty>r_{+}>r_{-}>0 \tag{4.4}
\end{equation*}
$$

The boundary conditions for Eqs.(4.2) now have the form (4.3), (4.4). At $\gamma=0$ we have the well-known case of Couette flow. Problem (4.2)-(4.4) can be solved in terms of elementary functions:

$$
\begin{gathered}
A(r) \equiv \gamma, \quad B(r)=Q \delta^{-1}(\alpha)\left[\chi(r, \alpha)-\frac{\chi\left(r_{+}\right)-\chi\left(r_{-}\right)}{r_{+}^{2}-r_{-}^{2}} r^{2}-\frac{\chi\left(r_{+}\right) r_{+}^{-2}-\chi\left(r_{-}\right) r_{-}^{-2}}{r_{+}^{-2}-r_{-}^{2}}\right] \\
\alpha=R \gamma \neq 0, \chi(r, \alpha)=r^{m}, \alpha \neq-2, \chi(r,-2)=\ln r \\
\delta(\alpha)=1 / 2 r^{m}\left[a^{m}-1\right] v\left(a^{2}, 1 / 2^{\alpha} \alpha\right), \alpha \neq-2, m=\alpha+2 \\
\nu(z, \beta)=\left[(z-1)^{-1}-\left(z^{q}-1\right)^{-1}\right] \ln z-q^{-1} \beta, \quad q=\beta+1 \\
\delta(-2)=\ln a\left[1 / 2(\ln a-1)+\left(a^{2}-1\right)^{-1}\right], a=r_{+} / r_{-}, \chi\left(r_{ \pm}\right)=\chi\left(r_{ \pm}, \alpha\right)
\end{gathered}
$$

It can be shown that $\delta(\alpha) \neq 0$, and then problem (4.2)-(4.4) has a solution.
We shall prove that $v(z, \beta) \neq 0$ if $z>1, \beta \neq 0, \beta+-1$.
If $z>1$ we have $v(z, 1)<0, v(z,-2)>0$.
Fixing $\beta$, we have

$$
v(z, \beta)=-1 / 1 x \beta(s-1)^{2}+o\left((z-1)^{3}\right), z \rightarrow 1
$$

For fixed $z>1$ it is true that

$$
\begin{gathered}
v(z, \beta)=\beta\left[z \ln ^{2}(z)(z-1)^{-2}-1\right]+o\left(\beta^{2}\right), \beta \rightarrow 0 \\
v(z, \beta)=\ln (z)(z-1)^{-1}-1+\beta^{-1}+O\left(\beta^{-2}\right), \beta \rightarrow+\infty \\
v(z, \beta)=(z-1)^{-1} z \ln (z)-1+\beta^{-1}+O\left(\beta^{-2}\right), \beta \rightarrow-\infty \\
v(z, \beta)<0, \beta \geqslant\left[(z-1) \ln ^{-1}(z)-1\right]^{-1}
\end{gathered}
$$

Now, to prove that $\delta(\alpha) \neq 0$, we need only observe that

$$
\begin{gathered}
\partial \nu / \partial \beta=\eta^{-2}\left[\ln ^{2}\left(2^{\eta}\right)\left(z^{\eta}-z^{-\eta}\right)^{-2}-1 / 4<0, \eta \neq 0, z>1, \eta=1 / 2(\beta+1)\right. \\
\delta(-2) \geqslant 1 / 2 \ln a\left[1 / 2 \ln \left(3+8^{1 / 2}\right)-\left(1+2^{-1 / 2}\right)^{-1}\right]>0,1478 \ln a
\end{gathered}
$$

Thus a solution exists for any $R, \gamma, r_{+}, r_{-}$.
In accordance with (3.7), the pressure is

$$
p(r, \theta)=-\frac{\rho \gamma^{2}}{2 r^{2}}+\rho \int_{r_{-}}^{r} \frac{B^{2}(s)}{s^{s}} d s+2 \rho \gamma Q \frac{\chi\left(r_{+}\right)-\chi\left(r_{-}\right)}{\delta(\alpha)\left(r_{+}^{2}-r_{-}^{2}\right)} \theta+C_{5}
$$

If $\gamma Q \neq 0$ there is a cut along the ray $\theta=\pi$.
The following estimates hold for $r \in\left[r_{-}, r_{*}\right], r_{*}=r_{+} \alpha^{-2 / \alpha}, \alpha=R \gamma>0$ :

$$
\begin{gathered}
B(r)=b(r)+O\left(\alpha^{-2}\right), b(r)=1 / 2 Q a_{*} r_{+}^{\alpha+2}\left[2 a_{*} \ln (a)-1+2 / \alpha\right]\left(1-r_{-}^{-2} r^{2}\right) \\
p(r, \alpha)=-\frac{\rho \gamma^{2}}{2 r^{2}}+\rho \int_{r_{-}}^{r} \frac{b^{2}(s)}{s^{3}} d s-\rho \gamma b^{\prime \prime} \theta+C_{5}+O\left(\alpha^{-2}\right) \\
\alpha \rightarrow+\infty, a_{*}=\left(a^{2}-1\right)^{-1}
\end{gathered}
$$

Thus, in this region, if $\gamma>0, R \rightarrow \infty$, the solution is identical to within $O\left(\alpha^{-2}\right)$ with the corresponding solution of Euler's equations. A boundary layer forms in $\left[r_{*}, r_{+}\right]$. For lack of space we shall not analyse its structure. Similarly, if $\gamma<0, R \rightarrow \infty$, a boundary layer forms only at a wall through which fluid is being extracted, provided that $\quad r \in\left[r_{-}\right.$, $\left.r_{-}|\alpha|^{-2 / \alpha}\right]$. Outside this region the solution is identical to within $O\left(\alpha^{-2}\right)$ with that of Euler's equations.

Fig. 5 illustrates the streamlines for $Q<0, \gamma>0$.
5. First class of unsteady flows. The equations governing unsteady two-dimensional viscid incompressible flow are

$$
\begin{equation*}
u_{x}+v_{y}=0, \quad u_{y}-v_{x}=\omega, \quad R\left[\omega_{i}+u \omega_{x}+v \omega_{y}\right]=\Delta \omega \tag{5.1}
\end{equation*}
$$

Eqs.(5.1) have solutions of the form

$$
v=S(y, t), u=A(y, t) x+T(y, t), \omega=B(y, t) x+\Omega(y, t)
$$

The functions $S, A, T, B$ and $\Omega$ satisfy the system of equations

$$
\begin{equation*}
A=-S_{y}, B=A_{y}, \Omega=T_{y} \tag{5.2}
\end{equation*}
$$

$$
S_{y y y}+R\left[-S_{y t}-S S_{y y}+\left(S_{y}\right)^{2}\right]=g(t), \quad T_{v y}-R\left[T_{t}-S_{y} T+S T_{y}\right]=\xi(t)
$$

where $g(t)$ and $\xi(t)$ are arbitrary function.
The pressure here is

$$
p(x, y, t)=-\frac{\rho g(t) x^{2}}{2 R}+\frac{\rho \xi(t) x}{R}+\frac{\rho S_{y}}{R}-\frac{\rho S^{2}}{2}-\int_{0}^{y} S_{t}(s, t) d s+\mu(t)
$$

The following families of unsteady solutions of Eqs.(5.2) may be found by quadratures.
First family.

$$
\begin{aligned}
& S=a y+b, \quad\{a, b\}=\mathrm{const}, \quad a \neq 0, \quad T=\int_{y_{0}(t)}^{y} \eta(s, t) d s \\
& \eta=\exp (n a t) L_{n}\left(a y+b, C_{1}, \quad C_{2}\right), \quad n= \pm 1, \pm 2, \ldots
\end{aligned}
$$

$L_{-n}\left(\xi, \quad C_{1}, \quad C_{2}\right)=\mathrm{M}_{+}(\xi) \mathrm{N}_{n}{ }^{+}, n=1,2, \ldots ; L_{n+1}\left(\xi, C_{1}, C_{2}\right)=\mathrm{N}_{n}{ }^{-}$.

$$
n=0,1, \ldots
$$

$$
\mathrm{N}_{n}^{ \pm}=\frac{d^{n}}{d \xi^{n}}\left[\mathrm{M}_{\mp}(\xi)\left(C_{\mathbf{1}}+C_{\mathrm{a}} \int_{0}^{\xi} \mathrm{M}_{ \pm}(s) d s\right)\right], \quad \mathrm{M}_{ \pm}(\xi)=\exp \left( \pm \frac{R \xi^{\mathrm{s}}}{2 a}\right)
$$

where $L_{-n}\left(\xi,(-1)^{n}, 0\right)$ are the Chebyshev-Hermite polynomials. The First Family of solutions is derived on the basis of well-known results $/ 7, \mathrm{pp} .377,378$ / and using a method due to zbornik/7, pp.568-570/ (however, not all the solutions exhibited above may be found in /7/). Second family. If $S=a(t) y+b(t)$, then the function $\eta=T y$ satisfies the heat conduction equation

$$
\begin{equation*}
\eta_{t}=R^{-\mathbf{1}} \eta_{v v}-[a(t) y+b(t)] \eta_{y} \tag{5.3}
\end{equation*}
$$

Eq.(5.3) has solutions

$$
\begin{equation*}
\eta=\exp \left(\delta(t) y^{2}+\beta(t) y\right) \sum_{k=0}^{n} \alpha_{k}(t) y^{k} ; \quad n=0,1, \ldots \tag{5.4}
\end{equation*}
$$

In this case we obtain a non-linear system of $n+3$ ordinary differential equations in the $n+3$ coefficients $\delta, \beta, \alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}$. Solutions can be obtained by quadratures in the case $\delta=\beta \equiv 0$ and in the case $\alpha_{1}=\alpha_{2}=\ldots=\alpha_{n} \equiv 0$. Some of the solutions (5.4) go to infinity in a finite time.

Third family. If $S=b(t)$, the change of variables

$$
\tau=t, \quad \xi=R^{1 / y} y-R^{1 / 2} \int_{0}^{t} B(s) d s
$$

converts (5.3) into the heat equation $\eta_{\tau}=\eta_{\xi 5}$.
Fourth family. If $S=-6 /(R y)$, the second of Eqs. (5.2) may be converted, by transforming the function and one of the variables

$$
U(s, t)=s^{3} T\left(R^{-1 / 4} s, t\right), s=R^{4 / 2} y
$$

into the non-homogeneous heat conduction equation

$$
U_{t}-U_{s t}=-R^{-1} s^{3} \xi(t)
$$

Other unsteady solutions may be obtained by rotation of the $x, y$ axes.
6. Second class of unsteady flows. The same change of functions and variables as in Sect. 3 reduces Eqs.(5.1) to the form of Eqs.(3.1) and the equation

$$
\begin{equation*}
-R \frac{\partial \omega}{\partial t}+\frac{1}{r} \frac{\partial}{\partial r}\left[r \frac{\partial \omega}{\partial r}\right]+\frac{1}{r^{2}} \frac{\partial^{2} \omega}{\partial \theta^{2}}=R\left[u_{r} \frac{\partial \omega}{\partial r}+\frac{u_{\theta}}{r} \frac{\partial \omega}{\partial \theta}\right] \tag{6.1}
\end{equation*}
$$

Eqs.(3.1), (6.1) have solutions of the form

$$
\begin{gathered}
u_{r}=\frac{A\left(t_{r} r\right)}{r}, \quad u_{\theta}=-\theta \frac{\partial A}{\partial r}+\frac{B\left(t_{,} r\right)}{r}, \quad \omega=\frac{\theta}{r} \frac{\partial}{\partial r}\left(r \frac{\partial A}{\partial r}\right)-\frac{1}{r} \frac{\partial B}{\partial r} . \\
\theta \in[0,2 \pi)
\end{gathered}
$$

The functions $A$ and $B$ satisfy the system of equations

$$
\begin{gather*}
-\frac{\partial^{2}}{\partial t \partial r}\left(r \frac{\partial A}{\partial r}\right)+\frac{1}{R} \frac{\partial}{\partial r}\left(r \frac{\partial}{\partial r}\left(\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial A}{\partial r}\right)\right)\right)+  \tag{6.2}\\
{\left[\frac{1}{r} \frac{\partial A}{\partial r} \frac{\partial}{\partial r}\left(r \frac{\partial A}{\partial r}\right)-A \frac{\partial}{\partial r}\left(\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial A}{\partial r}\right)\right)\right]=0} \\
-\frac{\partial}{\partial t}\left(\frac{1}{r} \frac{\partial B}{\partial r}\right)+\frac{1}{\operatorname{Rr}} \frac{\partial}{\partial r}\left(r \frac{\partial}{\partial r}\left(\frac{1}{r} \frac{\partial B}{\partial r}\right)\right)+\left[\frac{B}{r^{3}} \frac{\partial}{\partial r}\left(r \frac{\partial A}{\partial r}\right)-\right.  \tag{6.3}\\
\left.\frac{A}{r} \frac{\partial}{\partial r}\left(\frac{1}{r} \frac{\partial B}{\partial r}\right)\right]=0
\end{gather*}
$$

The pressure in this case is

$$
\begin{gathered}
p(t, r, \theta)=-\frac{\rho}{2}\left[-r-\frac{\partial^{2} A}{\partial t \partial r}+\left(\frac{\partial A}{\partial r}\right)^{2}-\frac{A}{r} \frac{\partial}{\partial r}\left(r \frac{\partial A}{\partial r}\right)+\right. \\
\left.\frac{r}{R} \frac{\partial}{\partial r}\left(\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial A}{\partial r}\right)\right)\right] \theta^{2}+\left[-r \frac{\partial B}{\partial t}+B \frac{\partial A}{\partial r}-A \frac{\partial B}{\partial r}+\right. \\
\left.\frac{1}{R}\left(r \frac{\partial^{2} B}{\partial r^{2}}-\frac{\partial B}{\partial r}\right)\right] \frac{\rho \theta}{r}-\rho \int\left[\frac{1}{r} \frac{\partial A}{\partial t}+\frac{A}{r^{2}} \frac{\partial A}{\partial r}-\frac{A^{2}+B^{2}}{r^{3}}-\right. \\
\left.\left(R r^{2}\right)^{-1} \frac{\partial}{\partial r}\left(r \frac{\partial A}{\partial r}\right)\right] d r+\Phi(t), \quad \rho=\mathrm{const}>0
\end{gathered}
$$

where $\Phi(t)$ is an arbitrary function.
Particular solutions of Eq. (6.2) are the functions $A=D(t) \ln r+E(t)$. In that case

Eq. (6.3) becomes the heat conduction equation

$$
\begin{equation*}
U_{t}-R^{-1} U_{r r}+\left[R^{-1}+E(t)+D(t) \ln r\right]\left(r^{-1} U_{r}-r^{2} U\right)=0, \quad U=B_{r} \tag{6.4}
\end{equation*}
$$

Thus, if $D \equiv 0, E \equiv-1 / R$ all bounded solutions of Eq. (6.4) may be found by using Fourier transforms. One such solution is

$$
\begin{gathered}
u_{r}=-(R r)^{-1}, u_{\theta}=\exp \left(-R^{-1} \pi^{2} t\right)(\pi r)^{-1} \sin (\pi r) \\
\omega=-\exp \left(-R^{-1} \pi^{2} t\right) r^{-1} \cos (\pi r) \\
p(r, t)=-\rho\left(2 R^{2} r^{2}\right)^{-1}+\rho \pi^{-2} \exp \left(-R^{-1} \pi^{2} t\right) \int_{1}^{r} s^{-3} \sin ^{2}(\pi s) d s+\Phi(t)
\end{gathered}
$$

This represents unsteady viscous incompressible flow between the two porous cylinders $r_{1}=1, r_{2}=n \quad$ with injection and extraction, where $n=2,3, \ldots$

I wish to thank Yu.D. Shmyglevskii for his interest and O.V. Troshkin for useful comments.

## REFERENCES

1. SHMYGLEVSKII YU.D., On flows of viscous liquid not depending on the Reynolds number. Zh. Vychisl. Mat. mat. Fiz., 30, 6, 1990.
2. BATCHELOR G.K., On introduction to Fluid Dynamics. Cambridge University Press, Cambridge, 1967.
3. PROUDMAN I., An example of steady laminar flow at large Reynolds numbers. J. Fluid Mech., 9, 4, 1960.
4. TERRILL R.M., Laminar flow in a uniformly porous channel with large injection. Aeronaut. Quart., 16, 4, 1965.
5. PUKHNACHEV V.V., Non-classical Problems in Boundary-Layer Theory, Novosibirsk University, Novosibirsk, 1979.
6. LANDAU L.D. and LIFSHITZ E.M., Theoretical Physics, 6, Fluid Dynamics, Nauka, Moscow, 1986.
7. KAMKE E., Handbook of Ordinary Differential Equations, Nauka, Moscow, 1976.

[^0]:    MrikI,Matem.Mekhan., 55,3,373-381,1991

