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The accurate solution will have the form 

and shows that the effect is largely determined by the intensity of the interaction of the 
components of the gas, which is characterized by the parameter k,R (Fig.2). In the case 
of weak interaction, when the value of this parameter is small (k,,R = 0.5, 1 and 21, the 
components of the binary mixture behave as though they are independent. It is interesting 
to 
of 
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note that in the case of strong interaction <k,R = CO), the flow again acquires the form 
Poiseuille flow with the overall viscosity of the components and with the overall gradient. 
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EXACT SOLUTIONS OF THE NAVIER-STOKES EQUATIONS* 

V.I. GRYN 

Considering steady Hiemenz-Birman flows only, a study is made of flows 
between porous walls, on the assumption that fluid is injected and 
extracted at identical rates. It is shown that wherever fluid is being 
extracted a boundary layer forms at the wall. A class of unsteady 
two-dimensional flows, more general than Hiemenz-Birman flow, is 
investigated. In a class of flows generalized Jeffrey-Hamel flow, 
attention is devoted to flows in a dihedral angle between porous walls 
when fluid is injected and extracted, A class of steady (unsteady] 
two-dimensional flows is found, in which flow between coaxial porous 
cylinders, with fluid injected and extracted at arbitrary rates, is 
considered. Some exact solutions of the steady- and unsteady-state 
Navier-Stokes equations are found. 
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I- PIOM between &WPOUS Waz'k when there is injection and eztrwtion. 

steady two-dimensional viscid incompressible flow il./ 
The equations governing 

U, -+- uy = 0, uy -v, = w, Aw = R (aw, + uoy) (1.1) 

have solutions of the following form (Hiemenz-Birman flow /2-4/): 

u=S(y), u=A(y)~iT(y), o=B(y)s+Q(y) (1.2) 

Other solutions are obtained from (1.2) by rotating the x, y axes. The functions S, A, 
T, B and Q satisfy the system of equations 

A z -_S', B zz'#, Q = T' (1.3) 

fP’) + R (S’S” - SS”) = 0, TM f A (S”T - ST”) = 0 (1.4 

Note that Eqs.(l.4) can be written differently as 

S" + R (S'a - SS") = c 1, 2'" + R (S’T - ST’) = C, 

Throughout, the letters C,, Cz, . . . will denote constants. 
Eqs. (1.4) have the obvious solutions 

(1.5) 

?Jt 
s=c,$/ i C,, T=fiCjexp (1/2C,Rse +C,Rsj dsdt -i_ C,y f C, 

00 

and also solutions of the form 

S = --6/(Ry), T = C&" -I- e,y + c&-3 

If C, = 0 the equations for S becomes an Abel equation of the second kind. 
The pressure corresponding to solutions of type (1.2) is 

p (I, y) = --'/*C,R-*p~~ -+ c&?-$2 -!- R-'pS' - '/npSZ -i- c, 

where p is the density of the liquid and Cl and C, are the constants in (1.5). If C,+O, 
the substitution z=x-z30 brings us to the case c, = o/3/. 

In connection with flows (1.2) with C, =O, studies have been published /3, 41 of 
flows between porous walls y -r&h assuming that fluid is injected or extracted at rates 
v* (at the wall y = --h one has injection if v_>o, extraction if Y_ (0 and no-slip 
if V_ =O). Assuming that V+ = V_s V in 13, 41 only the solutions S= V, TsO were 
found. We shall expand these results by conducting a more complete analysis of flows at 
v_ = v,. In addition, we shall assume that the wall y =h is moving at a horizontal 
velocity U. The boundary conditions for Eqs.tl.4) are as follows: 

s(-rt:h)=V*, s’{-i_h)=O, T(--hh)=tO, T(h)=U, i T@)&=Q 0.6) 

where the integral condition is an analogue of the 
(this condition was replaced in /J, 4/ by Cz =O). 

streamlines for the case U = V_ = 0, V+ < 0 
Fig.l-5 are represented by dashed lines; the solid 
represent solid walls. The existence of back flow 
/3#J. 

discharge of liquid in the section x=0 

are shown in Fig.1. The porous walls in 
diagonally hatched lines in Fig.1 and 4 
at large R has been observed previously 

Let us consider the case V, = V__E V>ob when problem (1.4), 
terms of elementary functions: 

s (I/) = v, T(Y) =1 x (U/h), 7 (5) = l/,V (1 + E) i- (Q - 
Iexp (aE) - sh (cr) F; - ch (a)1 {Zh ftrlsh(u) - ch(a)l}-', 

The pressure in this case is 

11.6) can be solved in 

Uh) x 
a = RVh 

P (5, y) = --pV {(Q - Uh) lZhz fctll (a) - a-‘)I-* + ‘,‘ah-‘U} .z -+ const 

The following asymptotic estimates hold: 

T (Y) = '/,h-' (Q - Uh) (1 + o-9 (1 + Y/W + '/,u (1 + y/h) -I- 0 W") 

P (x, Y) = --;"pI'{f/~h-e (Q - Uh) (1 + o-r) +r/$'U + 0 (a-*)) -t- 
const 

y E f--h-, h,l, h, = h (1 - Za- In a). cc > d 

W) 
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Fig.1 

Fig.2 

Fig.4 

Thus, in this 
Euler's equations 
however, there is 
subregions. For 

Fig.3 Fig.5 

region the solution is identical, to within 0 (a-?, with the solution of 
%nd there is no boundary layer at the wall y---h. At the wall !/=A, 
4 boundary layer if Q# Uh. It will be convenient to divide it into two 
Y E [A,, hl, 4 = h(l- ciz), we have the following asymptotic estimate: 

T fY) = '/,A-'@ - UA) (2 + a-') Q (1 -Y/A) + ',',U (1 + Y/A) + 
0 (u-~) = liT + a (Q/h - V) (I - y/h) i- 0 (cc-“) 

The second formula of (1.7) holds for YEI---~,~],IX,>~. Consequently, for Y~fh,,lz] the 
solution of problem 11.41, (1.6) does not approach a solution of the Euler equations. However, 
at YE t-h, h,l U [h,, hl the streamlines coincide to within O(a-*) with the corresponding 
parabolas. When JIE [h,,h,l the parabolas are "spliced" together. 

The streamlines 

x (Y; C,) = (Q - Uhf @ZULU exp (h%y) - ‘/JP sh (a) y" - ch (a) Yf x 
{2h k@sh (a) - ch <a)l)-' +I,'* U (Y + %A-'Y2) + C, 

at U=O are shown in Fig.2. 

2. Ptows aZtowing tmnsformation to vorticity-stream function variab'les. Let 9* = n, 
%&.=--II and assume that the following hold. 

Condition 3. Qs% -*X0, # 0. 
Consider the functions 

(2.1) 

Condition 2. u = U(O), u = V(0). 
If Conditions 1 and 2 both hold, then dGijdO = a-‘Fi, i = &2, and therefore d&&r = e-'Rg', 

dofdw = 2Rg. Thus, 
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u = c1ga, c, > 0, g = c,-‘Ro + c,, x = CICIR-l (C1-‘Ro + C,) 
Y = cI-Ic4x, c,* + c,z = C,-lRZ, u = c,w + c5, v = -c,w + c,, 

W = C,R- (o - C, In 1 o + C, I), C, = C,C,R-1, C,C, + C,C, = C,-‘R 

(2.2) 

Condition 3. u = u (ax + by), u = v (as + by), a2 + b* = 1. 

Proposition 1. If Conditions 1 and 2 hold, Eqs.Il.1) have exactly the same solutions 
as when Conditions 1 and 3 hold, and all these solutions are given by (2.2). 

Condition 4. o = o (ar + by), a2 + b* = 1. 
We may assume without loss of generality that a=O, b=l (rotation of the r, y axes). 

Let Conditions 1 and 4 hold. Then 

o" = Rvo’, v = v(y) # 0, u, = -v’ zz g, (y), uy = 0 

u = ! 0 (4 ds + f* (49 f*’ (4 - g, (Y) = Cl% f* = c,x + G 
cl 

u = -GY + c,, Cl2 + c,* # 0, Y # CI’G 

o (y) = C, 1 exp (C,Rs --‘/.&,9) ds + C, (2.3) 

u (~7 Y) = c,* + C,s + C,y + C,* (y - C;‘C,) 1 w (s) ds + C;‘C,R-‘u (y) 

w (y) = exp [--‘/,C,R (y - >,-T#l 
C,* = C, exp (1/$-1C,2R), C,* = C, - C,-lC,R-l 

If Conditions 1, 4 are satisfied, all the other conditions are obtained from (2.3) by 
rotation of the X, y axes. 

Condition 5. x = x (o), Y = Y (0). 
Let Conditions 1 and 5 hold. Then 

\ 
u ) 0, dG,/do -= o-‘F,, g = g (co), YdX - XdY = 0 

ax + bY = 0, a2 + b2 = 1, ao, + bo, = 0 

o = o (ay - bx) 

(2.4) 

The following result follows from (2.3) and (2.4). 

Proposition 2. If Conditions 1 and 5 hold, Eqs.(l.l) have exactly the same solutions as 
when Conditions 1, 4 hold, and all these solutions are either of the form (2.3) or derivable 
from (2.3) by rotation of the x, y axes. 

3. P2m.s in a dihedral angle between porous wtts with injection and extraction. Let us 
transform the functions and variables in (1.1) by setting 

Then (1.1) becomes 

; (rur) + -g = 0, &Le)-‘~+O=O (3.1) 

la T;[+]+-;S $=R[u$++$f] (3.2) 

We will seek solutions on the assumption that Condition 1 holds, which is equivalent to 
the condition g= u,&/ar + uer-Vo/a0 # 0. If g = 0 all the local solutions were found in /l/. 

Let us assume that the following hold. 
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Condition 6. ue = B (r). 
Then it follows from (3.1) and (3.2) that 

(3.3) 

There are two possible cases: 

Case 1: A” (e) f 0. Then w = CJr. 

4A’ + A” + BRAA’ - CIRA” = 0, A” f o (3.4) 

Eq.(3.4) can be transformed to 

4A + A” + RAa - CIRA’ = C,, A” f o (3.5) 

Eq.(3.5) with C, = 0 is the Jeffrey-Hamel equation, which occurs in the theory of flows 
in diverging and converging ducts. A detailed analysis of Eq.(3.5) with C1 = 0 may be 
found in /5, 6/. We shall expand the description in 15, 6/ by expressing all the solutions 
in terms of elementary functions when C1 = 0. They are 

A (e) = -CS’ tg2 I(‘/,R)“lC, (e + C,)l - 2R-’ - */&2, e E [o, 2~) 

A (e) = C,’ ch-’ I(l/eR)“Ce (0 + C,)l - 2R-’ - 1/&2, 8 E [o, 27~) 

A (0) = --[6 (0 + CP +21/R, e E LO, 2n); c, # 0, c, # 0 

The last two solutions have a cut along the ray e=o in the x, y plane. Among these 
solutions there are some satisfying no-slip conditions at the rays 8 = ff3,. They are 

A (e) = 2R-’ [3u2 ch+ (ae) - (1 + al)], a2 E (I/~, w) 

Iewkw e*(a)=ln[(*)"-(2--&y] 

The no-slip condition holds along the rays 8 =&e,(a). The function O,(a) increases 
monotonically from 0 at a =2-'/l to In (3'1% + 2'11) at a = 00. 

Flows with C,#O may also be of some interest. In this class we consider steady two- 
dimensional viscous incompressible flow between two porous walls 0 = 0, 0 = 28. Fluid is 
injected (extracted) at the wall f3 = 0 (fl = 2fi) at a rate CJr>O. The discharge 8 of the 
liquid through the cross-section r = con& is prescribed. The boundary conditions added to 
Eq.(3.4) are 

A(O)=A(2&=0, pa! A(e)de=Q 
0 

The case C, = 0 correspondd,. if Q>O, to Jeffrey-Hamel flow in a diverging duct, 
and if QcO - in a converging duct. The streamlines in the case Q <O,Cl>O are shown 
in Fig.3. 

If is not our purpose here to analyse the boundary layer at the wall e=28. We 
mention that some of the flows described by Eq.(3.4) have infinite radial velocity along 
certain rays (I A (e,) 1 = co). Thus, if Cl>0 flows with closed streamlines may exist. 

Thus, in Case 1 the flows have the form 

U (e) = C,/r, ur = A (ep, p = (2RP)_’ p [4A (e) - c, - C12R1 + c, (3.6) 

where A, C, and C, are as in (3.5). 

Case 2. A = C,e + Cl. Then we infer from (3.3) that C, =O, and consequently, assuming 
the truth of Condition 1, we have 

ue = -_[d (d + 2)1-l C,rd+’ - ‘/J.g + Car-‘, d = C,R # -2 

w = -(dr)-T, In r - l/&,r + Cl+, d = -2; U, = C,r-1 

(3.7) 

r %aw P=-cg+PS --q--s+C,C,pe+C,, C,#O, C,#O 
1 

If C,#O there is a cut along the ray 8 = 0. 
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Proposition 3. If Conditions 1 and 6 hold, all solutions of Eqs.(l.l) have the form 
(3.6), (3.7). 

4. Ptrws between cwziaZ porous cylinders with injection and extraction. Let us assume 
that 

Condition 7. B, = u, trl. 
It follows from (3-l)-(3.3) that 

u, = A (r)/r, zq = -A’0 + 3 (r)/r, w = r-l [(rA’)‘e - B’] 

(r (r-l (rA’)‘)‘)’ I_ R W’A’ (rA’)’ - A (r-l (rA’)‘)‘] = 0 

(r (rvLB’)‘)’ -i_ R [r-2B (rA’)’ - A (T’B’) = 0 

Tine pressure is 

(4.1) 
(4.2) 

P = --l/& I(A’)2 - r-IA (rA’)’ + R-lr (r-l (rA’)‘)‘] B* + p [A’R - 

AR’ + R-’ (rR” - fj’)] r-18 _ pi[r-ZAA’ _ r-3 (A2 + B?) _ 
X-1r-2 (rA’)‘] dr + C, 

If A'&0 or B'f C,(2 + RA)r, there will be a cut at 0 = n. 

Proposition 1. If Condition 7 holds, the solutions of Eqs.(3.1) and (3.2) constitute a 
seven-parameter family of type (4.1), where the functions A and B satisfy (4.2). 

The flows (4.1) are analogous to (1.2). We note that formulae (1.2) exhaust all the flows 
for which u = u(y). 

Integration yields the following family of solutions of Eqs.14.2): 

3 = i C,t i sc exp [1/&R (In s)~] dsdt + ‘/zC,r2 + C, 
1 

A = C, In r -+ C,; c = C,R - 1 

If Cl3 + C,% # 0 and C,# 0, Condition 1 holds (the solution depends on RI. 
Within the class of flows (1.2), let us consider flow between coaxial porous cylinders 

r=ri, with a fluid being injected or extracted at rates V,, v+l; =#= V-r_. Under these 
circumstances there is a cut at the ray B = n, acting as a sink for some r values and a 
source for other P values. The boundary conditions for the set of Eqs.(4.2) are 

A(r*)=V*r*, A’(r,)=B(r*)=O, 
r- 

where the integral condition is an analogue of the discharge of liquid through the section 
0 = 0. 

The streamlines in the case V_ = O,V+<O,Q <O are shown in Fig.4. The two close- 
lying straight-line segments in Figs.4 and 5 represent cuts. The structure of the flow in 
Fig.4 is similar to that of the flow in Fig.1. 

Let us consider the case 

V+r+ = V-r_ E y # 0, oi, > r+ > r_ > 0 (4.4) 

The boundary conditions for Eqs.(4.2) now have the form (4.31, (4.4). At y =0 we have 
the well-known case of Couette flow. Problem (4.2)-(4.4) can be solved in terms of elementary 
functions: 

A (r)E y,, B(r)= QV(a) 
[ 

~(r,a)-x(r~~S~r~~-) rz - 
x (r+) r;Z -x (r-f r? 

- I 
r;2 - 7-2 

a = Ry f 0, x (r, a) = r”‘, a # -2, x (r, -2) = In r 

6 (a) = l/f: [am - 11 Y (a2, 1/aa), a # -2, m = a -f- 2 

v (z, p) = I(2 - I)_” - (24 - I)_11 In z - q-18, q = p -t- 1 

6 (-2) = In a [1/z (In a - 1) f (a" - 1)-l], a = r+/r_, x (rh) = x (r*, a) 

It can be shown that 6(a)# 0, and then problem (4.2)-(4.4) has a solution. 
We shall prove that v(z,@)#O if z>i, b#O,fi#-1. 
If S>i we have Y (2, 1) < 0, V (2. -2) > 0. 
Fixing p, we have 

Y (e, @, = - '/,p 6 (d - *)a + 0 ((2 - VJ), = - 1 
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For fixed s>i it is true that 

v (1, (3, = p [z In’ (2) (2 - 1)-a - 11 + 0 (p), (3 - 0 

Y (I, p) = In (2) (I - I)-' - i + b-1 + 0 (B"), fi - +m 
V (2, fi) = (2 - 1)-l I In (2) - 1 + b-1 + 0 (p-"), 0 - --oo 

Y (2, fi) < 0, b > I(2 - l) ln-’ (2) - 11-1 

Now, to prove that 6(a)#O, we need only observe that 

Wag = '1-Z [Id (2") (19 - z-q-2 - V&J < 0, q # 0, I > 1, ?j = l/g (B + 1) 

6 (-2) > l/a In a ['/a In (3 + 89 - (i + Z-I")-I] > 0,147s In a 

Thus a solution exists for any R, v, r+, r_. 
In accordance with (3.7), the pressure is 

If YQ# 0 there is a cut along the ray e = n. 
The following estimates hold for r~ [r_, r,], r* = r+a-*/a, a = Ry>O: 

B (r) = b (r) + 0 (aP), b (r) = l/eQa&?* [2a, In (a) - 1 + 2/a] (1 - r_-'r') 

P(rT4=-g+pS ** Cs) ---F-- ds - ppb”e + c, + 0 (cc”), 
P- 

a++ ca,a,=(a2-I)-' 

Thus, in this region, if y>O,R+-m, the solution is identical to within O(a-“) with 
the corresponding solution of Euler's equations. A boundary layer forms in Ir,, ?'+I. For 
lack of space we shall not analyse its structure. Similarly, if y < 0, R-t m, a boundary 
layer forms only at a wall through which fluid is being extracted, provided that r E [r-, 
r_ 1 a I-*'al. Outside this region the solution is identical to within O(a-") with that of 
Euler's equations. 

Fig.5 illustrates the streamlines for Q (0, y>O. 

5. First class of unsteady flows. The equations governing unsteady two-dimensional 
viscid incompressible flow are 

u,+v,=O, uu--u,=o, R[~~+uo),+uq,]=A~ 

Eqs.(5.1) have solutions of the form 

v = S (y, t), u = A (y, t) 5 + 2' (Y, t), 0 = B (Y> t) 2 + 51 (Y, t) 

The functions S, A, T, B and g satisfy the system of equations 

A = -S,, B = A,, 52 = T, 

Svu, + R I- S,f - SS,, + (&,)‘I = g(t)* T,,--[IT,-SS,T $-ST,]=%(t) 

where g(t) and %(t)l are arbitrary function. 
The pressure here is 

(5.1) 

(5.2) 

p (5, y, t) = - .qg- + R PEw= ++qqs*(s,t)ds+p(t) 
0 

The following families Of unsteady solutions of Eqs.(5.2) may be found by quadratures. 

First family. 

Y 
S = ay + b, (a, b) = const, a ~0, T = S q (s, t) ds 

U.(i) 
q = exp @at) L, (ay + b, C,, C,), n = _tl, )2, . . . 

.L (E, C,, C,) = M, (E) N,,+, n = 1, 2, . . .; L,, (5, C,, c,) = N,-, 
n=o, 1, . . . 
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where Ll (%, (--v, 0) are the Chebyshev-Hermite polynomials. The First Family of solutions 
is derived on the basis of well-known results /I, pp.377, 3781 and using a method due to 
Zbornik /I, pp.568-570/ (however, not all the solutions exhibited above may be found in ./7/j. 

Second fmiZy* If S = a(t)@ I_ b(t), then the function n = T?J satisfies the heat con- 
duction equation 

rli = fi-'lvl, - Ia (t) Y -t b (Ql vu (5.3) 
Eq.(5.3) has solutions 

~=eXP(6(t)y'fB(L)y)~~~a*(t)Y'? n=O,%,... (5.4) 

In this case we obtain a non-linear system of n $3 ordinary differential equations in 
the n + 3 coefficients 6, p, ad, a,, - . ‘I a,. Solutions can be obtained by quadratures in the 
case 6 = t3= 0 and in the case a,=a,=...=a,=o. Some of the solutions (5.4) go to 
infinity in a finite time. 

Third fmity. If S = b(t), the change of variables 

t 
~=t, E= R’/‘y-R+3(s)ds 

0 

converts (5.3) into the heat equation rh = 11~~. 

m&k fcmiZy. ‘If S = --6/(Ry), the second of Eqs.(5.2) may be converted, by trans- 
forming the function and one of the variables 

U (s, t) = s3T (R-‘12: s, t), s = R’J* y 

into the non-homogeneous heat conduction equation 

U, - U,, = -R-V% (t) 

Other unsteady solutions may be obtained by rotation of the I, y axes. 

6. Second cZass of zuisteadg f2otJ-s. The same changeof functions and variables as in 
Sect.3 reduces Eqs.(S.lf to the form of Eqs.(3.1) and the equation 

Eqs.(3.1), (6.1) have solutions of the form 

The functions A and B satisfy the system of equations 

The pressure in this case is 

where @((t) is 
Particular 

p (t, r, 0) = -+-[-r-$+(-$-r-4--j-(r-$)+ 

~~(f-g.{r~))JR~+ [-r~+3$&?++ 
+(r~-“E)]+-pS [f_!L+$_!$~_ 

(RP)-’ -a431 dr + d, (t), p = const > 0 

an arbitrary function. 
solutions of Eq.(6.2) are the functions A =I) (t)Inr _t E(t). In that case 

(6.31 
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Eq.(6.31 becomes the heat conduction equation 

V, - R-‘U,, + (R-’ + E (t) + D (t) In rl (r-W, - rW) = 0, U = B, (6.4) 

Thus, if D 3 0, EC -i/R all bounded solutions of Eq.(6.4) may be found by using 
Fourier transforms. One such solution is 

u, = -(Rr)-‘, TV = exp (-R%c2t) (SW)-’ sin (nr) 

o = --exp (-R-Wt) r-l cos (nr) 

p (r, t) = --p (2RV)-1 + ,xc-~ exp (- R-Wt) isea sin2 (ns) ds + @ (t) 
1 

This represents unsteady viscous incompressible flow between the two porous cylinders 
rl = 1, r, = m with injection and extraction, where n = 2, 3, . . . 

I wish to thank Yu.D. Shmyglevskii for his interest and O.V. Troshkin for useful comments. 
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